Đề ôn tập Toán 5 - Các dạng toán về số đo thời gian

pdf 18 trang minhtam 8222
Bạn đang xem tài liệu "Đề ôn tập Toán 5 - Các dạng toán về số đo thời gian", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_on_tap_toan_5_cac_dang_toan_ve_so_do_thoi_gian.pdf

Nội dung text: Đề ôn tập Toán 5 - Các dạng toán về số đo thời gian

  1. 1.3. Lễ kỉ niệm 600 năm ngày sinh của Nguyễn Trãi được tổ chức vào năm 1980. Như vậy Nguyễn Trãi sinh năm nào ? Năm đó thuộc thế kỉ nào ? 1.4. Viết số thích hợp vào chỗ chấm: 1 5 thế kỉ = năm 3 ngày = giờ ngày = giờ 3 1 4 giờ = phút giờ = phút 300 năm = thế kỉ 4 1 1 8 phút = giây phút = giây thế kỉ = năm 2 5 1.5. Viết số thích hợp vào chỗ chấm: 190 phút = giờ phút 213 năm = thế kỉ năm 125 giây = phút giây 56 ngày = tháng ngày 260 giây = phút giây 72 giờ = ngày giờ 1.6. Viết số thích hợp vào chỗ chấm: 5 ngày 3 giờ = giờ 3 phút 25 giây = giây 3 năm 8 tháng = tháng 6 giờ 20 phút = phút 9 năm 9 tháng = tháng 30 phút 30 giây = giây Dạng 2. So sánh số đo thời gian Cách làm. Đổi các số đo về cùng một loại, rồi so sánh như so sánh hai số tự nhiên, hai số thập phân, hai phân số. 1 Ví dụ 2.1. Trong cuộc thi chạy 60m, Nam chạy hết phút, Bình chạy hết 12 giây. 4 Hỏi ai chạy nhanh hơn và nhanh hơn mấy giây ? Phân tích. Muốn xác định ai chạy nhanh hơn, cần phải so sánh thời gian chạy của Nam và Bình. Ai chạy hết ít thời gian hơn, người đó chạy nhanh hơn. Muốn biết chạy nhanh hơn mấy giây, ta lấy thời gian người về sau trừ cho thời gian người về trước. Giải. Bước 1. Đổi: phút = 15 giây. Bước 2. So sánh: 12 giây < 15 giây. Vậy Bình chạy nhanh hơn và nhanh hơn là: 15 – 12 = 3 (giây). Ví dụ 2.2. Trong các khoảng thời gian sau, khoảng thời gian nào là dài nhất ? 3 a) 600 giây ; b) 20 phút ; c) giờ ; d) giờ. 10 Phân tích. Đổi các số đo thời gian đã cho thành phút, rồi so sánh để chọn số chỉ khoảng thời gian dài nhất. 4
  2. Giải. 1 3 Bước 1. Đổi: 600 giây = 10 phút ; giờ = 15 phút ; giờ = 18 phút. 4 10 Bước 2. So sánh: 10 phút , , <, =) thích hợp vào chỗ chấm: a) 1,5 ngày 30 giờ b) 3 giờ 3 phút 3,3 giờ c) 2 phút 5 giây 2,5 phút d) 3 phút 45 giây 2,25 phút. 2.3. Trong các khoảng thời gian sau, khoảng thời gian nào dài nhất ? A. 85 phút B. 1 giờ 25 phút C. 2 giờ 5 phút D. 126 phút 2.4. Thầy giáo yêu cầu ba bạn Bắc, Trung và Nam cùng giải một đề toán. Bắc làm 1 hết giờ, Trung làm hết giờ, còn Nam làm hết 14 phút 30 giây. Hỏi bạn nào làm nhanh 4 nhất, bạn nào làm chậm nhất ? 2.5. Trong một cuộc thi chạy 200m, có ba vận động viên đạt kết quả như sau: Vận 19 động viên thứ nhất chạy hết 23 giây, vận động viên thứ hai chạy hết 23,32 giây, vận 60 47 động viên thứ ba chạy hết giây. Hỏi vận động viên nào chạy nhanh nhất ? 2 Dạng 3. Các bài toán về cộng, trừ, nhân, chia số đo thời gian Loại 1. Cộng số đo thời gian Cách làm: Bước 1. Viết các số đo có cùng tên đơn vị thẳng hàng, cột với nhau. Bước 2. Thực hiện cộng các số đo có cùng tên đơn vị với nhau theo thứ tự từ hàng đơn vị thấp đến hàng đơn vị cao. Nếu tổng số lớn hơn 1 đơn vị ở hàng liền trên thì đổi ra hàng đơn vị liền trên đó rồi cộng với với tổng số đo của hàng liền trên. Nếu tổng đó lại lớn hơn 1 đơn vị hàng liền trên nó thì lại đổi tiếp ra hàng đơn vị liền trên. Ví dụ 1.1. Một ô tô đi từ Hà Nội đến Thanh Hóa hết 3 giờ 15 phút rồi đi tiếp đến Vinh hết 2 giờ 35 phút. Hỏi ô tô đó đi cả quãng đường từ Hà Nội đến Vinh hết bao nhiêu thời gian ? Phân tích. Để biết ô tô đó đi cả quãng đường từ Hà Nội đến Vinh hết bao nhiêu thời gian ta phải thực hiện phép cộng: 3 giờ 15 phút + 2 giờ 35 phút = ? Để thực hiện phép cộng trên, ta phải đặt tính rồi tính. 5
  3. Giải. Ta đặt tính rồi tính như sau: 3 giờ 15 phút + 2 giờ 35 phút 5 giờ 50 phút Vậy ô tô đó đi cả quãng đường từ Hà Nội đến Vinh hết thời gian là: 3 giờ 15 phút + 2 giờ 35 phút = 5 giờ 50 phút. Đáp số: 5 giờ 50 phút. Ví dụ 1.2. Một người tham gia đua xe đạp, quãng đường đầu tiên đi hết 22 phút 58 giây, quãng đường thứ hai đi hết 23 phút 25 giây. Hỏi người đó đi cả hai quãng đường hết bao nhiêu thời gian ? Phân tích. Để biết người đó đi cả hai quãng đường hết bao nhiêu thời gian ta phải thực hiện phép cộng: 22 phút 58 giây + 23 phút 25 giây = ? Để thực hiện phép cộng trên, ta phải đặt tính rồi tính. Giải. Ta đặt tính rồi tính như sau: 22 phút 58 giây + 23 phút 25 giây 45 phút 83 giây (83 giây = 1 phút 23 giây) Vậy: 22 phút 58 giây + 23 phút 25 giây = 46 phút 23 giây. Người đó đi cả hai quãng đường hết thời gian là: 22 phút 58 giây + 23 phút 25 giây = 46 phút 23 giây. Đáp số: 46 phút 23 giây. Loại 2. Trừ số đo thời gian Cách làm: Bước 1. Viết các số đo có cùng tên đơn vị thẳng hàng, cột với nhau. Bước 2. Nếu đơn vị nào của số bị trừ nhỏ hơn số đo cùng tên đơn vị của số trừ thì lấy 1 đơn vị ở hàng liền trên đổi ra cùng đơn vị của số bị trừ rồi cộng với số đơn vị đã có ở số bị trừ để trừ. Thực hiện trừ các đơn vị cùng hàng với nhau theo thứ tự từ hàng đơn vị thấp đến hàng đơn vị cao. Ví dụ 2.1. Một ô tô đi từ Huế lúc 13 giờ 10 phút và đến Đà Nẵng lúc 15 giờ 55 phút. Hỏi ô tô đi từ Huế đến Đà Nẵng hết bao nhiêu thời gian ? Phân tích. Để biết ô tô đi từ Huế đến Đà Nẵng hết bao nhiêu thời gian ta phải thực hiện phép trừ: 15 giờ 55 phút – 13 giờ 10 phút = ? Để thực hiện phép trừ trên, ta phải đặt tính rồi tính. Giải. Ta đặt tính rồi tính như sau: 15 giờ 55 phút - 13 giờ 10 phút 2 giờ 45 phút Vậy ô tô đi từ Huế đến Đà Nẵng hết thời gian là: 6
  4. 15 giờ 55 phút – 13 giờ 10 phút = 2 giờ 45 phút. Đáp số: 2 giờ 45 phút. Ví dụ 2.2. Trên cùng một đoạn đường, Hòa chạy hết 3 phút 20 giây, Bình chạy hết 2 phút 45 giây. Hỏi Bình chạy ít hơn Hòa bao nhiêu giây ? Phân tích. Để biết Bình chạy ít hơn Hòa bao nhiêu giây ta phải thực hiện phép trừ: 3 phút 20 giây - 2 phút 45 giây = ? Để thực hiện phép trừ trên, ta phải đặt tính rồi tính. Giải. Ta đặt tính rồi tính như sau: 3 phút 20 giây 2 phút 80 giây - đổi thành - 2 phút 45 giây 2 phút 45 giây Vậy: 3 phút 20 giây - 2 phút 45 giây = 35 giây. 0 phút 35 giây Bình chạy ít hơn Hòa số thời gian là: 3 phút 20 giây - 2 phút 45 giây = 35 giây. Đáp số: 35 giây. Loại 3. Nhân số đo thời gian Cách làm: Muốn nhân một số đo thời gian với một số, ta lần lượt nhân số đơn vị của từng hàng với số đó theo thứ tự từ hàng đơn vị thấp đến hàng đơn vị cao. Nếu tích số lớn hơn 1 đơn vị của hàng liền trên thì đổi ra đơn vị hàng liền trên rồi cộng với tích số của hàng liền trên. Nếu tổng đó lớn hơn 1 đơn vị của hàng liền trên nó thì lại đổi tiếp ra đơn vị của hàng liền trên rồi cộng với tích số của hàng đó. Ví dụ 3.1. Trung bình một người thợ làm xong một sản phẩm hết 1 giờ 10 phút. Hỏi người đó làm 3 sản phẩm như thế hết bao nhiêu thời gian ? Phân tích. Để biết người đó làm 3 sản phẩm như thế hết bao nhiêu thời gian ta phải thực hiện phép nhân: 1 giờ 10 phút 3 = ? Để thực hiện phép nhân trên, ta phải đặt tính rồi tính. Giải. Ta đặt tính rồi tính như sau: 1 giờ 10 phút 3 3 giờ 30 phút Vậy người đó làm 3 sản phẩm như thế hết số thời gian là: 1 giờ 10 phút 3 = 3 giờ 30 phút. Đáp số: 3 giờ 30 phút. Ví dụ 3.2. Mỗi buổi sáng Hạnh học ở trường trung bình 3 giờ 15 phút. Một tuần lễ Hạnh học ở trường 5 buổi. Hỏi mỗi tuần lễ Hạnh học ở trường bao nhiêu thời gian ? Phân tích. Để biết mỗi tuần lễ Hạnh học ở trường bao nhiêu thời gian ta phải thực hiện phép nhân: 3 giờ 15 phút 5 = ? Để thực hiện phép nhân trên, ta phải đặt tính rồi tính. Giải. Ta đặt tính rồi tính như sau: 3 giờ 15 phút 7 5 15 giờ 75 phút (75 phút = 1 giờ 15 phút)
  5. Vậy: 3 giờ 15 phút 5 = 16 giờ 15 phút. Mỗi tuần lễ Hạnh học ở trường số thời gian là: 3 giờ 15 phút 5 = 16 giờ 15 phút. Đáp số: 16 giờ 15 phút. Loại 4. Chia số đo thời gian Cách làm: Muốn chia một số đo thời gian cho một số, ta lấy số đơn vị ở hàng cao nhất chia cho số đó, còn dư bao nhiêu thì đổi đơn vị sang hàng thấp hơn kế tiếp, gộp vào với số đơn vị của hàng ấy rồi lại chia tiếp cho số đó. Cứ làm như thế cho đến số đơn vị của hàng cuối cùng. Ví dụ 4.1. Hải thi đấu 3 ván cờ hết 42 phút 30 giây. Hỏi trung bình Hải thi đấu mỗi ván cờ hết bao lâu ? Phân tích. Để biết trung bình Hải thi đấu mỗi ván cờ hết bao lâu ta phải thực hiện phép chia: 42 phút 30 giây : 3 = ? Để thực hiện phép chia trên, ta phải đặt tính rồi tính. Giải. Ta đặt tính rồi tính như sau: 42 phút 30 giây 3 12 14 phút 10 giây 0 30 giây 00 Vậy trung bình Hải thi đấu mỗi ván cờ hết số thời gian là: 42 phút 30 giây : 3 = 14 phút 10 giây. Đáp số: 14 phút 10 giây. Ví dụ 4.2. Một vệ tinh nhân tạo quay xung quanh Trái Đất 4 vòng hết 7 giờ 40 phút. Hỏi vệ tinh đó quay xung quanh Trái Đất 1 vòng hết bao lâu ? Phân tích. Để biết vệ tinh đó quay xung quanh Trái Đất 1 vòng hết bao lâu ta phải thực hiện phép chia: 7 giờ 40 phút : 4 = ? Để thực hiện phép chia trên, ta phải đặt tính rồi tính. Giải. Ta đặt tính rồi tính như sau: 7 giờ 40 phút 4 3 giờ = 180 phút 1 giờ 55 phút 220 phút 20 0 Vậy: 7 giờ 40 phút : 4 = 1 giờ 55 phút. Vệ tinh đó quay xung quanh Trái Đất 1 vòng hết số thời gian là: 8
  6. 7 giờ 40 phút : 4 = 1 giờ 55 phút. Đáp số: 1 giờ 55 phút. Bài tập tự luyện: 3.1. Tính: a) 3 giờ 15 phút + 5 giờ 30 phút; b) 7 giờ 12 phút + 3 giờ 20 phút + 12 giờ 29 phút; c) 15 giờ 7 phút + 10 giờ 40 phút + 6 giờ 32 phút; d) 2 tuần 6 ngày 36 phút 54 giây + 9 ngày 23 giờ 45 phút. 3.2. Nam đi từ nhà đến bến xe hết 35 phút, sau đó đi ô tô đến Viện Bảo tàng Lịch sử hết 2 giờ 20 phút. Hỏi Nam đi từ nhà đến Viện Bảo tàng Lịch sử hết bao nhiêu thời gian ? 3.3. Tính: a) 13 năm 2 tháng – 8 năm 6 tháng; b) 4 năm 3 tháng – 2 năm 8 tháng; c) 15 ngày 6 giờ - 10 ngày 12 giờ; d) 13 giờ 23 phút – 5 giờ 45 phút. 3.4. Một người đi từ A lúc 6 giờ 45 phút và đến B lúc 8 giờ 30 phút. Hỏi người đó đi quãng đường AB hết bao nhiêu thời gian ? 3.5. Tính: a) 12 phút 25 giây 5 ; b) 3 giờ 14 phút 3 ; c) 6 giờ 15 phút 6 ; d) 45 ngày 21 giờ 4. 3.6. Một chiếc đu quay quay mỗi vòng hết 1 phút 25 giây. Bé Lan ngồi trên đu quay và quay 3 vòng. Hỏi bé Lan ngồi trên đu quay bao nhiêu lâu ? 3.7. Tính: a) 24 phút 12 giây : 4 ; b) 35 giờ 40 phút : 5 ; c) 14 giờ 28 phút : 7 ; d) 10 giờ 48 phút : 9. 3.8. Một người thợ làm việc từ 7 giờ 30 phút đến 12 giờ và làm được 3 dụng cụ. Hỏi trung bình người đó làm 1 dụng cụ hết bao nhiêu thời gian ? 3.9. Tính: a) (3 giờ 25 phút – 1 giờ 40 phút) 5 ; b) (25 phút 30 giây + 1 giờ 58 phút 50 giây) : 2 ; c) 3 giờ 25 phút + 1 giờ 40 phút 5 ; d) 25 phút 30 giây + 1 giờ 58 phút 50 giây : 2 ; e) 2 giờ 15 phút 3 + 3 giờ 45 phút 2. 3.10. Hương và Hồng hẹn gặp nhau lúc 10 giờ 40 phút sáng. Hương đến chỗ hẹn lúc 10 giờ 20 phút còn Hồng lại đến muộn mất 15 phút. Hỏi Hương phải đợi Hồng trong bao nhiêu lâu ? 3.11. Bạn Lan xem giờ tàu từ ga Hà Nội đi một số nơi như sau: 9
  7. Ga xuất phát Ga đến Giờ khởi hành Giờ tới Hà Nội Hải Phòng 6 giờ 05 phút 8 giờ 10 phút Hà Nội Lào Cai 22 giờ 6 giờ Hà Nội Quán Triều 14 giờ 20 phút 17 giờ 25 phút Hà Nội Đồng Đăng 5 giờ 45 phút 11 giờ 30 phút Tính thời gian tàu đi từ ga Hà Nội đến các ga Hải Phòng, Quán Triều, Đồng Đăng, Lào Cai. 3.12. Bạn Toán đi từ nhà lúc 6 giờ 45 phút và đến trường lúc 7 giờ 20 phút. Tan học, Toán đi từ trường lúc 11 giờ 35 phút và về đến nhà lúc 12 giờ 15 phút. Toán đi học nhanh hơn hay về nhà nhanh hơn ? 3.13. Hai bạn Bắc và Nam cùng chạy vòng quanh khu nhà từ lúc 5 giờ 30 phút đến 6 giờ 15 phút. Bắc chạy được 15 vòng, còn Nam chạy được 12 vòng. Hãy cho biết mỗi bạn chạy một vòng trong bao lâu ? 3.14. Hai bạn Xuân và Hạ thi làm toán. Mỗi bạn đều làm được 10 bài nhưng Xuân làm nhanh gấp đôi Hạ. Biết rằng Xuân làm trong 1 giờ 40 phút. Hỏi Hạ làm trong bao lâu ? 3.15. Có 4 bạn đề nghị giờ xuất phát của chuyến đi du lịch là: - Xuân: 7 giờ 5 phút ; - Hạ: 7 giờ 15 phút ; - Thu: 7 giờ 30 phút ; - Đông: 7 giờ 35 phút. Nên chọn giờ xuất phát nào để lệch nhau so với thời gian mà các bạn đề nghị không quá 15 phút ? Dạng 4. Các bài toán về lịch Lịch là một dụng cụ dùng để đo thời gian, thường là ngày. Có hai loại lịch được dùng nhiều nhất là dương lịch và âm lịch. Các dữ kiện ngày, tháng, năm trong bài toán thường là tính theo dương lịch. Trong chương trình toán tiểu học có nhiều bài toán về lịch, chẳng hạn như: bài toán về tìm thứ trong tuần, bài toán về tìm số ngày trong tháng, Phương pháp chung để giải dạng toán loại này là vận dụng cách giải “Bài toán trồng cây” và phương pháp suy luận để giải. Ví dụ 4.1. Biết rằng ngày 14 tháng 1 năm 2004 là thứ tư. Hãy cho biết ngày 14 tháng 1 năm 2020 là thứ mấy ? Phân tích. Để biết ngày 14 tháng 1 năm 2020 là thứ mấy, ta lấy tổng số ngày từ 14 tháng 1 năm 2004 đến 14 tháng 1 năm 2020 chia cho 7. Nếu phép chia chia hết thì đó là ngày thứ tư, nếu phép chia còn dư thì ta tính tiến lên từ thứ tư đúng số ngày bằng số dư (thứ năm, thứ sáu, ). Để tính được tổng số ngày từ 14 tháng 1 năm 2004 đến 14 tháng 1 năm 2020 ta phải tính được từ 14 tháng 1 năm 2004 đến 14 tháng 1 năm 2020 là bao nhiêu năm, trong khoảng thời gian đó có bao nhiêu ngày 29 tháng 2. 10
  8. Giải. Từ năm 2004 đến năm 2020 có số năm là: 2020 – 2004 = 16 (năm). Do năm 2004 và 2020 đều là các năm nhuận, nên từ năm 2004 đến 2020 có: (2020 – 2004) : 4 + 1 = 5 (năm nhuận). Nhưng kể từ sau ngày 14 tháng 1 năm 2004 đến ngày 14 tháng 1 năm 2020 thì chỉ có 4 ngày 29 tháng 2 (vì ngày 29 tháng 2 năm 2020 nằm ngoài khoảng thời gian đã cho). Do đó tổng số ngày tính từ ngày 14 tháng 1 năm 2004 đến ngày 14 tháng 1 năm 2020 là: 365 16 + 4 = 5844 (ngày). Vì 5844 : 7 = 834 (dư 6) nên suy ra ngày 14 tháng 1 năm 2020 là thứ ba (tính tiến lên từ thứ tư đúng sáu ngày nữa). Đáp số: thứ Ba. Ví dụ 4.2. Biết ngày 22 tháng 12 năm 2004 là thứ tư. Hãy cho biết ngày 22 tháng 12 năm 1944 là thứ mấy ? Phân tích. Để biết ngày 22 tháng 12 năm 1944 là thứ mấy, ta lấy tổng số ngày từ 22 tháng 12 năm 2004 đến 22 tháng 12 năm 1944 chia cho 7. Nếu phép chia chia hết thì đó là ngày thứ tư, nếu phép chia còn dư thì ta tính lùi từ thứ tư đúng số ngày bằng số dư (thứ ba, thứ hai, ). Để tính được tổng số ngày từ 22 tháng 12 năm 2004 đến 22 tháng 12 năm 1944 ta phải tính được từ 22 tháng 12 năm 2004 đến 22 tháng 12 năm 1944 là bao nhiêu năm, trong khoảng thời gian đó có bao nhiêu ngày 29 tháng 2. Giải. Từ năm 1944 đến năm 2004 có số năm là: 2004 – 1944 = 60 (năm). Do năm 1944 và 2004 đều là các năm nhuận, nên từ năm 1944 đến 2004 có: (2004 – 1944) : 4 + 1 = 16 (năm nhuận). Nhưng kể từ sau ngày 22 tháng 12 năm 1944 đến ngày 22 tháng 12 năm 2004 thì chỉ có 15 ngày 29 tháng 2 (vì ngày 29 tháng 2 năm 1944 nằm ngoài khoảng thời gian đã cho). Do đó tổng số ngày tính từ ngày 22 tháng 12 năm 1944 đến ngày 22 tháng 12 năm 2004 là: 365 60 + 15 = 21915 (ngày). Vì 21915 : 7 = 3130 (dư 5) nên suy ra ngày 22 tháng 12 năm 1944 là thứ sáu (tính lùi từ thứ tư đúng năm ngày nữa). Đáp số: thứ Sáu. Nhận xét: Qua hai ví dụ trên, chúng ta cần lưu ý, khi giải dạng toán loại này phải xác định ngày 29 tháng 2 của một năm nhuận nào đó có thuộc khoảng thời gian đã cho hay không. Ví dụ 4.3. Nếu trong một tháng nào đó mà có ba ngày thứ bảy đều là các ngày chẵn thì ngày 25 của tháng đó sẽ là ngày thứ mấy ? Phân tích. Vì 1 tuần lễ có 7 ngày (số lẻ) nên giữa hai ngày thứ bảy là ngày chẵn phải có một thứ bảy là ngày lẻ (vì tổng của số chẵn và số lẻ là số lẻ). Do có ba ngày thứ bảy là ngày chẵn nên tháng đó có ít nhất 5 thứ bảy; nhưng không thể có 6 thứ bảy trong một tháng (vì số ngày trong tháng không quá 31 ngày). Khai thác điều này ta sẽ tìm được lời giải cho bài toán. 11
  9. Giải. Vì 1 tuần lễ có 7 ngày nên giữa hai ngày thứ bảy là ngày chẵn phải có một thứ bảy là ngày lẻ. Do có ba ngày thứ bảy là ngày chẵn nên tháng đó có ít nhất 5 thứ bảy. Nhưng không thể có 6 thứ bảy trong một tháng (vì số ngày trong tháng không quá 31 ngày) nên tháng đó có đúng 5 thứ bảy và thứ bảy đầu tiên trong tháng phải là ngày chẵn. Khoảng thời gian giữa thứ bảy đầu tháng và thứ bảy cuối tháng là 4 tuần hay 28 ngày. Do đó thứ bảy đầu tiên không thể sau ngày mùng 2 vì khi đó tháng sẽ có quá 31 ngày. Suy ra ngày mùng 2 sẽ là ngày thứ bảy đầu tiên; thứ bảy tuần thứ tư sẽ là ngày: 2 + 7 3 = 23. Vậy ngày 25 của tháng đó là ngày thứ hai tuần thứ năm. Đáp số: thứ Hai. Bài tập tự luyện: 4.1. Biết rằng ngày 1 tháng 6 năm 2012 là thứ sáu. Hãy cho biết ngày 1 tháng 6 năm 2016 là thứ mấy ? 4.2. Biết rằng ngày 1 tháng 6 năm 2012 là thứ sáu. Hãy cho biết ngày 1 tháng 6 năm 2008 là thứ mấy ? 4.3. Ngày 8 tháng 3 năm 2004 là ngày thứ ba. Hỏi sau 60 năm nữa thì ngày 8 tháng 3 là thứ mấy ? 4.4. Trong một tháng nào đó có ba ngày chủ nhật là ngày chẵn. Hãy tính xem ngày 14 tháng đó là ngày thứ mấy trong tuần ? 4.5. Trong một tháng nào đó có hai ngày đầu tháng và cuối tháng đều là chủ nhật. Hỏi đó là tháng mấy ? 4.6. Ngày 20 tháng 11 năm 2017 là ngày thứ hai. Hỏi ít nhất mấy năm nữa thì ngày 20 tháng 11 cũng lại là thứ hai ? Đó là ngày 20 tháng 11 năm bao nhiêu ? 4.7. Ngày đầu tiên của năm 2018 là thứ hai. Hỏi trong năm 2018 có bao nhiêu ngày: chủ nhật, thứ hai, thứ ba, thứ tư, thứ năm, thứ sáu, thứ bảy ? 4.8. Nhà hộ sinh của một trạm y tế trong tháng hai năm 2017 có 29 em bé ra đời. Chứng tỏ rằng có ít nhất hai em bé sinh cùng ngày. 4.9. Tháng hai của một năm nào đó có 5 ngày chủ nhật. Hỏi tháng hai đó có bao nhiêu ngày ? 4.10. Nếu đếm các chữ số ghi tất cả các ngày trong năm 2016 trên tờ lịch treo tường thì sẽ được kết quả là bao nhiêu ? Dạng 5. Các bài toán về đồng hồ Đồng hồ là một dụng cụ dùng để đo khoảng thời gian dưới một ngày; khác với lịch, là một dụng cụ đo thời gian một ngày trở lên. Đồng hồ thường ghi nhận ba thông tin: giờ, phút, giây. Trong chương trình toán tiểu học có nhiều bài toán về đồng hồ, chẳng hạn như: bài toán về tìm giờ đúng, bài toán đếm số tiếng chuông (đối với đồng hồ có chuông), bài toán về đếm số (đối với đồng hồ hiển thị số, không có kim), Phương pháp chung để giải loại toán này là dựa vào đặc điểm của từng loại đồng hồ và mối quan hệ giữa ba đại lượng giờ, phút, giây để giải. 12
  10. Ví dụ 5.1. Tôi có một đồng hồ đeo tay và một đồng hồ báo thức. Cứ sau 24 giờ thì đồng hồ đeo tay chạy nhanh lên 6 phút, còn đồng hồ báo thức chạy chậm lại 6 phút (so với giờ đúng). Chiều hôm nay tôi để cả hai đồng hồ cùng chỉ giờ đúng là 4 giờ. Hỏi sáng ngày hôm sau, khi đồng hồ đeo tay chỉ 8 giờ 4 phút thì đồng hồ báo thức chỉ mấy giờ ? Lúc ấy, giờ đúng là mấy giờ ? Phân tích. Bài toán cho biết cứ sau 24 giờ thì đồng hồ đeo tay chạy nhanh lên 6 phút, còn đồng hồ báo thức chạy chậm lại 6 phút. Vì vậy để biết đồng hồ báo thức chỉ mấy giờ, ta phải tính được từ 4 giờ đúng chiều hôm trước đến 8 giờ đúng sáng hôm sau đồng hồ báo thức đã chạy chậm mấy phút. Giải. Tính từ 4 giờ đúng chiều hôm trước đến 8 giờ đúng sáng hôm sau có: (12 – 4) + 8 = 16 (giờ). Trong 16 giờ đó, đồng hồ đeo tay đã chạy nhanh lên: (6 : 24) 16 = 4 (phút). Do đó đồng hồ báo thức đã chạy chậm lại 4 phút. Vậy ngày hôm sau, khi đồng hồ đeo tay chỉ 8 giờ 4 phút thì giờ đúng lúc đó là 8 giờ và đồng hồ báo thức sẽ chỉ 7 giờ 56 phút. Đáp số: 7 giờ 56 phút ; 8 giờ. Ví dụ 5.2. Một đồng hồ có tiếng chuông ngân rất dài, thời gian giữa hai tiếng chuông là 3 giây. Ban đêm, ta cần bao nhiêu giây để biết giờ khi đồng hồ báo 11 giờ ? Phân tích. Muốn tính số giây để biết giờ khi đồng hồ báo 11 giờ, ta phải tính được số khoảng cách (thời gian giữa hai tiếng chuông) từ 1 giờ đến 11 giờ là bao nhiêu. Mặt khác, sau khi tiếng chuông thứ 11 vừa dứt thì ta còn phải chờ thêm 3 giây nữa để nghe có tiếng chuông thứ 12 hay không. Giải. Số giây để nghe từ tiếng chuông thứ nhất đến tiếng chuông thứ 11 là: 3 (11 – 1) = 30 (giây). Sau khi tiếng chuông thứ 11 vừa dứt thì ta còn phải chờ thêm 3 giây nữa để nghe có tiếng chuông thứ 12 hay không, do đó thời gian để biết 11 giờ là: 30 + 3 = 33 (giây). Đáp số: 33 giây. Ví dụ 5.3. Trên các đồng hồ điện tử, số chỉ giờ xuất hiện trên mặt đồng hồ từ 00 đến 23, số chỉ phút xuất hiện từ 00 đến 59. Hỏi một ngày (24 giờ), chữ số 2 xuất hiện trên mặt đồng hồ trong thời gian bao lâu ? Phân tích. Trước hết, ta tìm các số chỉ giờ có chữ số 2 xuất hiện trong một ngày, tính xem các số này xuất hiện trên mặt đồng hồ trong bao lâu. Tiếp theo, ta tính thời gian mà chữ số 2 xuất hiện trong các số chỉ phút. Giải. Số chỉ giờ có chữ số 2 xuất hiện trong một ngày gồm 6 số là: 02, 12, 20, 21, 22, 23. Sáu số này xuất hiện trên mặt đồng hồ trong 6 giờ. 13
  11. Trong một giờ chữ số 2 xuất hiện trong con số chỉ phút là: 02, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52. Mỗi con số này trong cùng một giờ xuất hiện đúng 1 phút. Vậy trong 1 giờ chữ số 2 xuất hiện ở con số chỉ phút với thời gian là: 1 15 = 15 (phút). Ta đã tính 6 giờ mà số chỉ giờ có chữ số 2, nên còn lại 18 giờ mà số chỉ giờ không có chữ số 2. Do đó thời gian chữ số 2 xuất hiện ở 18 giờ còn lại là: 15 18 = 270 (phút) = 4 giờ 30 phút. Vậy trong một ngày chữ số 2 xuất hiện trên mặt đồng hồ trong thời gian là: 6 giờ + 4 giờ 30 phút = 10 giờ 30 phút. Đáp số: 10 giờ 30 phút. Bài tập tự luyện: 5.1. Chiếc đồng hồ nhà Nam cứ mỗi giờ lại chạy nhanh 15 giây. Hôm nay, lúc 5 giờ sáng, Nam chỉnh lại chiếc đồng hồ theo giờ chuẩn trên đài. Hỏi đến 5 giờ sáng hôm sau thì chiếc đồng hồ nhà Nam sẽ chỉ mấy giờ ? 5.2. Một cái đồng hồ bị hỏng cứ 45 phút lại nhanh lên 2 giây. Buổi sáng lúc 7 giờ người ta đã chỉnh lại theo giờ đúng. Vào lúc 19 giờ (tức 7 giờ tối) thì đồng hồ này chỉ mấy giờ ? 5.3. Một đồng hồ mỗi ngày chạy chậm 4 phút. Người ta chỉnh lại đồng hồ theo thông báo của Đài Tiếng nói Việt Nam lúc 6 giờ sáng ngày thứ ba. Hỏi ngày thứ tư tuần sau, khi Đài Tiếng nói Việt Nam thông báo 12 giờ trưa thì đồng hồ đó chỉ mấy giờ ? 5.4. Đồng hồ của An chạy nhanh mỗi ngày 3 phút. An lấy giờ đúng vào lúc 6 giờ sáng ngày chủ nhật. Đến chiều thứ ba liền đó, khi đồng hồ của An chỉ 2 giờ, thì lúc đó giờ đúng là mấy giờ ? 5.5. Một chiếc đồng hồ quả lắc, cứ đúng 1 giờ trôi qua thì đổ chuông một lần. Khi điểm 1 giờ thì đổ một tiếng chuông, điểm 2 giờ thì điểm 2 tiếng chuông, Bạn Toán thường lắng nghe tiếng chuông, quan sát và tính toán được rằng: Khi đồng hồ điểm 3 giờ đúng thì đổ 3 tiếng chuông, mất 6 giây. Hỏi khi đồng hồ điểm 12 giờ thì mất bao nhiêu lâu để đổ 12 tiếng chuông ? 5.6. Một đồng hồ có tiếng chuông ngân rất dài, thời gian giữa hai tiếng chuông là 3 giây. Ban đêm, ta cần bao nhiêu giây để biết giờ khi đồng hồ báo 12 giờ ? 5.7. Một chiếc đồng hồ khi kim phút chỉ số 12 thì đánh số tiếng chuông đúng bằng số kim giờ chỉ và khi kim phút chỉ số 6 thì đánh 1 tiếng chuông. Hãy cho biết tại các thời điểm nào mà 3 lần đánh chuông liên tiếp đồng hồ chỉ đánh đúng 1 tiếng chuông. 5.8. Đồng hồ điện tử (loại hiện số trên màn hình, không có kim) đang chỉ 2 giờ 25 phút (2 : 25). Nếu em nhìn đồng hồ mỗi một phút từ 2 giờ 25 phút cho đến 3 giờ (3 : 00) thì thấy số 5 mấy lần ? 5.9. Có hai cái đồng hồ cát 4 phút và 7 phút. Có thể dùng hai cái đồng hồ này để đo thời gian 9 phút được không ? 5.10. Toán vui: Đồng hồ chạy nhanh hay chậm ? Cô Năm là nhân viên một công ty nọ. Một hôm, cô rời công ty đi công vụ, giữa đường gặp lại bạn cũ hồi còn đi học tiểu học. Hai người ghé vào cửa hàng giải khát tâm sự 14
  12. đến quên cả giờ giấc. Đến khi chợt nhớ lại thì đồng hồ trong cửa hàng đang chỉ 14 giờ 55 phút. Cô vội vàng trở về phòng làm việc, về đến công ty thì đồng hồ trong công ty đang là 15 giờ 10 phút. Lúc này, cô mới phát hiện tập hồ sơ quan trọng của công ty bị bỏ quên ở cửa hàng giải khát. Cô trở lại cửa hàng giải khát theo con đường cũ và với tốc độ như trước. Khi đến cửa hàng thì đồng hồ ở cửa hàng đang chỉ 15 giờ 15 phút. Đồng hồ ở công ty lấy theo giờ báo của đài phát thanh nên luôn chính xác. Vậy, đồng hồ ở cửa hàng giải khát nhanh hay chậm? Nhanh (hoặc chậm) bao nhiêu phút? C. NHỮNG ĐIỀU THÚ VỊ CÓ THỂ EM CHƢA BIẾT 1. VÌ SAO LẠI CÓ NĂM NHUẬN ? Chúng ta, ai cũng đã biết: Trái Đất tự quay quanh mình nó (chuyển động quanh trục) từ Tây sang Đông. Đồng thời Trái Đất quay xung quanh Mặt Trời theo một quỹ đạo nhất định. Một năm là thời gian cần thiết để Trái Đất thực hiện một vòng quay trọn vẹn quanh Mặt Trời. Trong suốt quá trình này, Trái Đất không ngừng quay trên trục của nó. Mỗi vòng quay đó tương ứng với 1 ngày. Vòng quay trọn vẹn của Trái Đất trên quỹ đạo của nó xung quanh Mặt Trời có thời gian chính xác là 365 ngày 5 giờ 48 phút 46 giây, tức là khoảng 365 ngày và 0,25 ngày. Như vậy, cứ theo chu kì 4 năm lại có dư được 1 ngày. Một ngày dư này gọi là ngày nhuận và được thêm vào tháng 2 của năm thứ 4 trong chu kì đó. Tháng 2 vào năm nhuận có 29 ngày. Năm có 366 ngày (do được thêm 1 ngày) là năm nhuận. Các nhà làm lịch tính bắt đầu từ năm thứ nhất (sau Công Nguyên) cho nên các năm 4, 8, 12, , 2000, 2004, 2008, là các năm nhuận (các số thứ tự của năm chia hết cho 4). Vì vậy muốn xét xem một năm nào đó có phải là năm nhuận không ta chỉ cần lấy số chỉ năm chia cho 4. Năm 2006 không phải là năm nhuận vì 2006 không chia hết cho 4. Năm 2008 là năm nhuận vì năm 2008 chia hết cho 4. Vì sao năm 1900 chia hết cho 4 nhƣng không phải là năm nhuận ? Lí do là vì Trái Đất quay 1 vòng xung quanh Mặt Trời trong 365 ngày 5 giờ 48 phút 46 giây vì thế khi ta tính tròn 1 năm = 365 ngày 6 giờ (để từ đó quy định cứ 4 năm phải có 1 năm nhuận) thì cứ mỗi năm lại dư ra: 365 ngày 6 giờ - 365 ngày 5 giờ 48 phút 46 giây = 11 phút 14 giây. Sau 1 thế kỉ (100 năm) sẽ dư ra: 11 phút 14 giây 100 = 1100 phút 1400 giây gần bằng 1123 phút. Sau 4 thế kỉ sẽ dư ra: 1123 4 = 4492 (phút) gần bằng 74,86 giờ và gần bằng 3 ngày. Vì cứ sau 4 thế kỉ (400 năm) lại dư ra 3 ngày nên người ta phải quy định thêm các trường hợp ngoại lệ để có quy tắc xác định năm nhuận (dương lịch) một cách chính xác như sau: Tất cả các năm có hai chữ số tận cùng tạo thành một số chia hết cho 4 đều là năm nhuận. Tuy nhiên đối với các năm cuối thế kỉ (tận cùng bằng hai chữ số không: 00) thì phải xét thêm hai chữ số đầu. 15
  13. - Nếu hai chữ số đầu tạo thành một số không chia hết cho 4 thì đó là năm không nhuận (năm thường). Ví dụ: 1700; 1800; 1900; 2100; là năm thường. - Nếu hai chữ số đầu tạo thành một số chia hết cho 4 thì đó là năm nhuận. Ví dụ: 1600; 2000; 2400; là năm nhuận. 2. ĐẾM TỪ 1 ĐẾN 1 TỈ HẾT BAO LÂU? Trong một giờ sinh hoạt Câu các bộ Em yêu Toán học, cô giáo đố học sinh: Nếu một người đếm các số tự nhiên liên tiếp từ 1 đến 1 tỉ thì hết bao nhiêu thời gian ? Cả lớp ào ào trả lời: 5 phút, 10 phút, 1 giờ, 1 ngày, 1 tháng, 1 năm, Cô giáo mỉm cười bảo học sinh lấy giấy nháp ra để tính. Cô gọi bạn Bắc đếm từ 1 và bạn Nam nhìn đồng hồ xem trong 1 phút bạn Bắc đếm được bao nhiêu số. Bắc đếm từ một đến một trăm hai mươi lăm thì Nam bảo hết một phút. Cô giáo mỉm cười nói: - Như vậy trung bình đếm 125 số hết 1 phút. Em nào cho cô biết 1 tỉ gấp bao nhiêu lần 125 ? Học sinh thực hiện phép chia: 1 000 000 000 : 125 = 8 000 000 (lần). Sau khi một em trả lời, cô giáo nói tiếp: - Đếm từ 1 đến 1 tỉ thì hết 8 000 000 phút. Vậy 8 triệu phút là bao nhiêu giờ? Học sinh làm tính tiếp theo: 8 000 000 : 60 = 133 333 (dư 20). - Như thế đếm đến 1 tỉ phải hết hơn 133 333 giờ. Vậy 133 333 giờ là bao nhiêu ngày ? Học sinh lại chia tiếp: 133 333 : 24 = 5 555 (dư 13). - Đếm đến 1 tỉ hết hơn 5555 ngày. Các em hãy tính xem 5555 ngày là bao nhiêu năm ? Học sinh lại tiếp tục chia: 5555 : 365 = 15 (dư 30). Vậy ta đã có câu trả lời cuối cùng: Đếm các số tự nhiên liên tiếp từ 1 đến 1 tỉ phải hết ít nhất là 15 năm với điều kiện không nghỉ một phút nào. Cô giáo lại hỏi tiếp: - Nếu mỗi ngày làm việc 8 giờ thì đếm từ 1 đến 1 tỉ phải hết bao nhiêu năm? Học sinh lại làm tiếp: Vì 24 : 8 = 3 (lần) nên để đếm từ 1 đến 1 tỉ thì ít nhất phải mất khoảng thời gian là: 15 3 = 45 (năm). Đến đây cô giáo kết luận: - Năm nay các em 10 tuổi học lớp 4. Vậy các em đếm từ 1 đến 1 tỉ thì hết ít nhất phải đến khi các em 55 tuổi may ra mới đếm xong. Cần biết rằng, với con số lớn thì đọc số phải mất nhiều thời gian hơn vì phải đọc nhiều từ, chẳng hạn số 123456789 phải đọc đủ 17 từ là: Một trăm hai mươi ba triệu bốn trăm năm mươi sáu nghìn bảy trăm tám mươi chín, chắc chắn mất nhiều thời gian hơn đọc số 1, số 2, 16
  14. 3. VÌ SAO THÁNG 2 CHỈ CÓ 28 HOẶC 29 NGÀY? Có khi nào em tự hỏi, vì sao tháng 2 lại có 28 ngày (năm nhuận là 29 ngày) trong khi các tháng khác trong năm đều có 30 hoặc 31 ngày ? Lí do là vì những năm 46 trước Công Nguyên, thống soái La Mã Julius César khi định ra lịch dương, quy định ban đầu là mỗi năm có 12 tháng, tháng lẻ là tháng đủ, có 31 ngày; tháng chẵn là tháng thiếu, có 30 ngày. Tháng 2 là tháng chẵn đúng ra phải có 30 ngày. Nhưng nếu tính như vậy thì một năm không phải có 365 ngày mà là 366 ngày. Do đó phải tìm cách bớt đi một ngày trong một năm. Vậy thì bớt đi một ngày trong tháng nào ? Lúc đó, theo tập tục của La Mã, rất nhiều phạm nhân đã bị xử tử hình, đều bị chấp hành hình phạt vào tháng 2, cho nên mọi người cho rằng tháng đó là tháng không may mắn. Trong một năm phải bớt đi một ngày, vậy thì bớt đi một ngày trong tháng 2, làm cho tháng không may mắn này bớt đi một ngày là tốt hơn. Do đó tháng 2 còn lại 29 ngày, đó chính là lịch Julius. Sau này, khi Augustus kế tục Julius César lên làm Hoàng đế La Mã. Augustus đã phát hiện ra Julius César sinh vào tháng 7, theo lịch Julius thì tháng 7 là tháng đủ, có 31 ngày, Augustus sinh vào tháng 8, tháng 8 lại luôn là tháng thiếu, chỉ có 30 ngày. Để biểu thị sự tôn nghiêm như Julius César, Augustus đã quyết định sửa tháng 8 thành 31 ngày. Đồng thời cũng sửa lại các tháng khác của nửa năm sau. Tháng 9 và tháng 11 ban đầu là tháng đủ thì sửa thành tháng thiếu. Tháng 10 và tháng 12 ban đầu là tháng thiếu sửa thành tháng đủ. Như vậy lại nhiều thêm một ngày, làm thế nào đây ? Lại lấy bớt đi một ngày trong tháng 2 không may mắn nữa, thế là tháng 2 chỉ còn 28 ngày. 4. TRƢỚC KHI CÓ ĐỒNG HỒ THÌ CON NGƢỜI ĐO THỜI GIAN BẰNG GÌ? Trước khi phát minh ra đồng hồ đeo tay, con người đã sử dụng nhiều thứ khác nhau để tính thời gian như: mặt trời, đèn cầy, nhang (hương), đồng hồ cát, Và đồng hồ được xem là một trong những phát minh cổ nhất của con người. 1. Đồng hồ Mặt trời Người thời cổ xưa cho rằng bóng của một thân cây thay đổi khi mặt trời di chuyển trên bầu trời. Và từ điều này, họ đã cắm một cây gậy thẳng đứng trên mặt đất, bóng cây gậy cũng di chuyển và chiều dài của bóng thay đổi trong ngày. Khi bóng của cây gậy ngắn, người thời cổ xưa biết rằng đây là lúc gần trưa, còn khi bóng dài họ biết rằng ngày bắt đầu hoặc sắp hết. Cùng với đó, người cổ xưa đã dùng các hòn đá để đánh dấu vị trí của bóng cây gậy để biết thời gian trong ngày. 2. Đèn cầy và nhang Đèn cầy và nhang được nhiều người sử dụng trong thời Trung Cổ. Khoảng thời gian để chúng cháy hết xấp xỉ bằng nhau và thường được dùng để ước tính thời gian. Đèn cầy và nhang chỉ giờ căn cứ vào nguyên tắc thời gian trôi qua tỉ lệ với đèn cầy và nhang cháy. 3. Đồng hồ cát Là đồng hồ dùng cát mịn cho chảy qua một cái lỗ nhỏ ở một tốc độ nhất định, từ đó xác định một khoảng thời gian. Đồng hồ cát dùng để đo các khoảng thời gian ngắn. Nguồn gốc của đồng hồ cát bắt nguồn từ Ai Cập. Ngày nay, đồng hồ cát còn được dùng để biết 17
  15. thời gian nói chuyện tại máy điện thoại hay dùng đến khi ngâm trứng gà trong nước sôi. Đồng hồ cát có nhiều loại: một giờ, nửa giờ, lại có loại dùng để đo các khoảng thời gian ngắn hơn dưới 10 phút. 18