Đề thi tuyển sinh Đại học môn Toán - Khối A - Năm học 2011 (Có đáp án)
Bạn đang xem tài liệu "Đề thi tuyển sinh Đại học môn Toán - Khối A - Năm học 2011 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_tuyen_sinh_dai_hoc_mon_toan_khoi_a_nam_hoc_2011_co_da.pdf
- DA toan.pdf
Nội dung text: Đề thi tuyển sinh Đại học môn Toán - Khối A - Năm học 2011 (Có đáp án)
- BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối: A ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) −+x 1 Câu I (2,0 điểm) Cho hàm số y = . 21x − 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Chứng minh rằng với mọi m đường thẳng y = x + m luôn cắt đồ thị (C) tại hai điểm phân biệt A và + B. Gọi k1, k2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A và B. Tìm m để tổng kk12 đạt giá trị lớn nhất. Câu II (2,0 điểm) 1sin2cos2++xx 1. Giải phương trình = 2sinx sin2x . 1cot+ 2 x ⎪⎧5432()0xy223−+−+= xy y x y 2. Giải hệ phương trình (,xy∈\ ). ⎨ 22 2 ⎩⎪xy()2() x++=+ y x y π 4 xsinxx++ ( 1)cos x Câu III (1,0 điểm) Tính tích phân I = d.x ∫ + 0 xxsin cos x Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC, cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60o. Tính thể tích khối chóp S.BCNM và khoảng cách giữa hai đường thẳng AB và SN theo a. Câu V (1,0 điểm) Cho x,,yzlà ba số thực thuộc đoạn [1; 4] và x ≥ y, x ≥ z. Tìm giá trị nhỏ nhất của x yz biểu thức P =++. 23x ++yyzzx+ PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy, cho đường thẳng ∆: x + y + 2 = 0 và đường tròn ():Cx22+− y 4 x − 2 y = 0. Gọi I là tâm của (C), M là điểm thuộc ∆. Qua M kẻ các tiếp tuyến MA và MB đến (C) (A và B là các tiếp điểm). Tìm tọa độ điểm M, biết tứ giác MAIB có diện tích bằng 10. 2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 1), B(0; –2; 3) và mặt phẳng ():2Pxyz−−+= 4 0. Tìm tọa độ điểm M thuộc (P) sao cho MA = MB = 3. Câu VII.a (1,0 điểm) Tìm tất cả các số phức z, biết: zz2 =+2 z. B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) xy22 1. Trong mặt phẳng tọa độ Oxy, cho elip ():E += 1. Tìm tọa độ các điểm A và B thuộc 41 (E), có hoành độ dương sao cho tam giác OAB cân tại O và có diện tích lớn nhất. 2. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ():Sx222++− y z4 x − 4 y − 4 z = 0 và điểm A(4; 4; 0) . Viết phương trình mặt phẳng (OAB), biết điểm B thuộc (S) và tam giác OAB đều. Câu VII.b (1,0 điểm) Tính môđun của số phức z, biết: (2zizi−+++−=− 1)(1 ) ( 1)(1 ) 2 2i. Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ; Số báo danh: